A Biomechanical Model for Dictyostelium Motility

نویسندگان

  • Mathias Buenemann
  • Herbert Levine
  • Wouter-Jan Rappel
  • Leonard M. Sander
چکیده

The crawling motion of Dictyostelium discoideum on substrata involves a number of coordinated events including cell contractions and cell protrusions. The mechanical forces exerted on the substratum during these contractions have recently been quantified using traction force experiments. Based on the results from these experiments, we present a biomechanical model of Dictyostelium discoideum motility with an emphasis on the adhesive properties of the cell-substratum contact. Our model assumes that the cell contracts at a constant rate and is bound to the substratum by adhesive bridges which are modeled as elastic springs. These bridges are established at a spatially uniform rate while detachment occurs at a spatially varying, load-dependent rate. Using MonteCarlo simulations and assuming a rigid substratum, we find that the cell speed depends only weakly on the adhesive properties of the cell-substratum, in agreement with experimental data. Varying the parameters that control the adhesive and contractile properties of the cell we are able to make testable predictions. We also extend our model to include a flexible substrate and show that our model is able to produce substratum deformations and force patterns that are quantitatively and qualitatively in agreement with experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of cell contraction and adhesion in dictyostelium motility.

The crawling motion of Dictyostelium discoideum on substrata involves a number of coordinated events including cell contractions and cell protrusions. The mechanical forces exerted on the substratum during these contractions have recently been quantified using traction force experiments. Based on the results from these experiments, we present a biomechanical model of the contraction phase of Di...

متن کامل

Manipulation and expression of molecular motors in Dictyostelium discoideum.

The eukaryote Dictyostelium discoideum is an attractive model organism for the study of cytoskeletal proteins and cell motility. The appearance and behavior of this cell closely resembles that of mammalian cells, but unlike mammalian cells, Dictyostelium offers the opportunity specifically to alter the cell physiology by molecular genetic approaches.

متن کامل

The Green Tea Catechin Epigallocatechin Gallate (EGCG) Blocks Cell Motility, Chemotaxis and Development in Dictyostelium discoideum

Catechins, flavanols found at high levels in green tea, have received significant attention due to their potential health benefits related to cancer, autoimmunity and metabolic disease, but little is known about the mechanisms by which these compounds affect cellular behavior. Here, we assess whether the model organism Dictyostelium discoideum is a useful tool with which to characterize the eff...

متن کامل

Analysis of chemotaxis in Dictyostelium.

Dictyostelium discoideum is an excellent model organism for the study of directed cell migration, since Dictyostelium cells show robust chemotactic responses to the chemoattractant cAMP. Many powerful experimental tools are applicable, including forward and reverse genetics, biochemistry, microscopy, and proteomics. Recent studies have demonstrated that many components involved in chemotaxis ar...

متن کامل

Abp1 regulates pseudopodium number in chemotaxing Dictyostelium cells.

When starved, Dictyostelium cells respond to extracellular signals, polarize, and move with strong persistence into aggregation centers. Actin and actin-associated proteins play key roles in regulating both the morphology and directed movements of cells during chemotactic aggregation. Recently, we identified an ortholog of Abp1 in Dictyostelium (Dabp1). The first actin binding protein identifie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009